pISSN 1226-6051
eISSN 2508-786X

Table. 1.

Table. 1.

Characteristics of cancer studies

Study name Source of data Number of patients Prediction values AI models Performance metrics
Aghakhani et al. (2023) Hospital data 44,112 Mortality DT, RF, GBM, XGBoost AUC, accuracy, sensitivity, specificity, F1 score, recall, precision
Ahamad et al. (2022) Public data 72,147 Severity, mortality, hospitalization RF, DT, XGBoost, GBM, SVM, GBM AUC, accuracy, F1 score, precision, recall
Upadhyay et al. (2021) Public data N/A Mortality NN N/A
Banoei et al. (2023) Hospital data 1,743 Mortality Bootstrap forest, Boosted tree, Neural boosted, Nominal logistic, lasso, svm, DT, KNN AUC, sensitivity, specificity
Carbonell et al. (2022) Hospital data 152 Mortality, severity Lasso AUC
An et al. (2020) Public data 10,237 Mortality LASSO, Linear SVM, RBF-SVM, RF, KNN AUC, accuracy, sensitivity, specificity
Gao et al. (2021) Hospital data 23,749 Mortality, severity LR, RF, NN, KNN, GBM, ensemble model (SVM, GBM, NN) AUC, accuracy, sensitivity, specificity, F1 score, PPV, NPV
Experton et al. (2021) Public data 1,030,893 Mortality, hospitalization RF AUC, accuracy
Heydar et al. (2022) Hospital data 505 Mortality RF AUC, accuracy, sensitivity, specificity
Heyl et al. (2022) Public data 215,831 Mortality RF, XGBoost, LR AUC, accuracy
Hilal et al. (2022) Public data 608,140 Mortality, hospitalization XGBoost AUC, accuracy, F1 score, recall, precision
Ikemura et al. (2021) Hospital data 4,313 Mortality GBM, XGBoost, GLM, RF, DL AUC, sensitivity, specificity
Jamshidi et al. (2021) Hospital data 797 Mortality RF, LR, GBM, SVM, NN AUC, sensitivity, specificity
Razjouyan et al. (2022) Public data 9,541 Mortality Lasso N/A
Edqvist et al. (2023) Public data 8,328,518 Mortality, hospitalization GBM, RF Accuracy
Karasneh et al. (2022) Hospital data 1,613 Mortality LR, RF, MARS, KNN, XGBoost, CART AUC
Lee et al. (2022) Public data 7,943 Mortality, hospitalization LR, RF AUC, precision
Modelli de Andrade et al. (2022) Hospital data 1,379 Mortality Lasso, XGBoost, Elastic Net AUC
Kivrak et al. (2021) Public data 1,603 Mortality XGBoost, RF, KNN, DL accuracy, sensitivity, specificity, precision
Rahman et al. (2021) Hospital data 250 Mortality self-developed model AUC, accuracy, sensitivity, specificity
Lorè et al. (2021) Hospital data 111 Mortality DT AUC
Rasmy et al. (2022) Public data CRWD: 247,960 OPTUM: 36,140 Mortality, mechanical ventilation, hospitalization LR, GBM, self-developed model AUC
Wollenstein-Betech et al. (2020) Public data 91,179 Mortality, hospitalization SVM, RF, XGBoost, LR AUC, accuracy, F1 score, precision, recall
Schmidt et al. (2021) Hospital data 4,643 Mortality XGBoost AUC
Alle et al. (2022) Hospital data 544 Mortality SVM, RF, XGBoost, LR AUC, F1 score, precision, recall
Nojiri et al. (2023) Hospital data 11,440 Mortality, severity XGBoost, Lasso AUC
Snider et al. (2021) Hospital data 127 Mortality, severity DT, RF, Lasso AUC, recall, precision
Subudhi et al. (2021) Hospital data 3,597 Mortality Boosting models, self-developed model N/A
Kar et al. (2021) Hospital data 2,370 Mortality XGBoost AUC, accuracy, sensitivity, specificity, F1 score, precision
Wu et al. (2021) Hospital data 2,144 Mortality DenseNet AUC, accuracy, sensitivity, specificity, F1 score, precision, recall
Guan et al. (2021) Hospital data 1,270 Mortality XGBoost, Lasso AUC,F1 score, precision, recall
Jung et al. (2022) Hospital data 1,076 Severity LR, XGBoost AUC, accuracy
Zhao et al. (2021) Hospital data 172 Severity LR, SVM AUC, accuracy, sensitivity, specificity
Jiao et al. (2021) Hospital data 2,309 Severity DL, self-developed model AUC, sensitivity, specificity, F1 score
Kang et al. (2021) Hospital data 151 Severity NN AUC, sensitivity, specificity, F1 score
Wong et al. (2021) Public data 502,524 Severity XGBoost AUC
Rojas-García et al. (2023) Public data 11,564 Severity SVM, RF, XGBoost, LR AUC, accuracy, sensitivity, specificity, F1 score, PPV, NPV
Burns et al. (2022) Public data 4,295 Severity LR, RF, SVM, XGBoost AUC, accuracy, specificity, F1 score, precision, recall, NPV
Wang et al. (2022) Hospital data 1,051 Severity self-developed model AUC, accuracy, sensitivity, specificity
Chen et al. (2021) Hospital data 362 Severity RF AUC, accuracy, sensitivity, specificity, F1 score
De Freitas et al. (2022) Hospital data 7,336 Hospitalization RF, XGBoost, GBM, Lasso AUC, accuracy, F1 score, precision
Jehi et al. (2020) Hospital data 4,536 Hospitalization Lasso AUC
Hao et al. (2020) Hospital data 2,566 Hospitalization, Mechanical ventilation SVM, RF, XGBoost, LR AUC, accuracy, F1 score, precision, recall
Aminu et al. (2022) Public data, hospital data 502 Mechanical ventilation LR, RF, SVM, GAM AUC, accuracy, sensitivity, specificity
Chen et al. (2021) Public data 6,485 Hospitalization Lasso, LR AUC, sensitivity, specificity

DenseNet: densely connected convolutional network; Lasso: least absolute shrinkage and selection operator; XGBoost: extreme gradient boosting; RF: random forest; LR: logistic regression; DT: decision tree; KNN: k-nearest neighbors; DL: deep learning model; SVM: support vector machine; NN: neural network; LGBM: light gradient boosting machine; GBM: gradient boosting model; GAM: generalized additive model; GLM: generalized linear model; MARS: multivariate adaptive regression splines; CART: classification and regression tree; AUC: area under the curve; AI: artificial intelligence; PPV: positive predictive value; NPV: negative predictive value.

Korean J Clin Pharm 2024;34:141-54 https://doi.org/10.24304/kjcp.2024.34.3.141
© 2024 Korean J Clin Pharm